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SUMMAFtY 

IN THIS work a generalized dynamical theory of thermoelasticity is formulated using a form of the 
heat transport equation which includes the time needed for acceleration of the heat flow. The 
theory takes into account the coupling effect between temperature and strain rate, but the resulting 
coupled equations are both hyperbolic. Thus, the paradox of an infinite velocity of propagation, 
inherent in the existing coupled theory of thermoelasticity, is eliminated. A solution is obtained 
using the generalized theory which compares favourably with a known solution obtained using the 
conventional coupled theory. 

1. INTRODUCTION 

THE GOVERNING equations for the displacement and temperature fields, as given 
by the linear dynamical theory of thermoelasticity, consist of the following two 
coupled partial differential equations 

Equation of motion p iit = (A + p) q, gf + put, jj - (8h + 2~) a T,c (1) 

Energy equation k !Z’,rt = pc~ !i’ + (8h + 2~) a T,J dkk. (2) 

The displacement field is governed by a wave-type equation, (1) and the temperature 
field is governed by a diffusion type equation, (2). The properties of the latter are 
such that a portion of the solution extends to infinity. That is, if an isotropic, 
homogeneous elastic continuum is subjected to a mechanical or thermal disturbance, 
the effect of the disturbance will be felt instantaneously at distances infinitely 
far from its source. Moreover, this effect will be felt in both the temperature and the 
displacement fields, since the governing equations are coupled. 

Physically, this means that a portion of the disturbance has an infinite velocity 
of propagation. Such behaviour is physically inadmissible and contradicts existing 
theories of heat transport mechanisms. This apparent paradox in the existing 
theory of thermoelasticity has been discussed by other authors, such as BOLEY 
(1964) for example. The theory presented here eliminates the paradox of an in- 
finite velocity of propagation by employing a more general functional relation be- 
tween heat flow and temperature gradient than is used in the existing theory. 

2. FORMULATION OF THE THEORY 

The energy equation for a thermally conducting elastic solid subjected to small 
rains and small temperature changes is given by 
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ofj iij + p T i = p B (8) 
where 

pTi= -qt,i (4) 

and a{~ is the stress tensor, etj is the small strain tensor, p is the mass density, e 
is the internal energy density, T is the absolute temperature, s is the entropy 
density, and qt is the heat flux vector. 

As shown in BOLEY and WEINER (1960), the principle of positive entropy- 
density production in an elastic continuous solid implies that pi and the temperature 
gradient in the solid T, g cannot take on arbitrary values, but that some functional 
relationship must exist between them. In the usual derivation of the coupled theory 
of thermoelasticity this functional relationship is taken to be linear, having the 
general form 

qi=bT,c+BzjT,j. (5) 

For an isotropic elastic solid this reduces to the wellknown Fourier law of heat 
conduction 

9$ = --kT,t (6) 

where the scalar k is the thermal conductivity of the solid. The development of 
the theory presented herein deviates from previous work at this point by assuming 
a more general functional relationship between qg and T, t. 

The premise of local reversibility is inherent in the derivation of the theory 
leading to the energy equation, as stated above. This same premise is used in the 
work by ONSAGER (1931) on reciprocal relations in irreversible processes. Onsager 
points out that the form of the heat conduction equation given by (6) results in an 
apparent contradiction to this premise, but adds that the objection is removed 
when we recognize that (6) ’ . . . . is only an approximate description of the process 
of conduction, neglecting the time needed for acceleration of the heat flow ‘. 

The most general, tensorially valid, linear relation between qt and T, t which 
takes into account the acceleration of the heat flow is of the form 

qt + aat + 45 c& = b T, 6 + Btf T, j (7) 

where a, AU, b and BU are material properties of the medium. For an isotropic 
elastic solid this reduces to 

qr+To4rf=-kT,i (8) 

where 70, the rekzxation time, represents the time-lag needed to establish steady- 
state heat conduction in an element of volume when a temperature gradient is 
suddenly imposed on that element. Equation (8) represents the modified form of the 
heat conduction equation which has been given a clear physical interpretation 
by CHESTER(~~~~). 

It is convenient at this point to introduce the Helmholtz free-energy function 
4 (EV, T) defined as 

4 (~ij, T) = e (EV, T) - T s (~65, T). (9) 

It follows from (3) and (9) and the relation 
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that the stress tensor at5 and the entropy s can be expressed in terms of the free- 
energy function as 

3+ 
at1 = P G, 3 (11) 

34 
S=-3T. 

Substituting (12) into (4) yields 

(12) 

(13) 

Combining (8) and (13), the following form of the energy equation in terms of the 
free-energy function is obtained 

m,rt = -pT w rT2( !kF+ 7&i+)+ ST tPij + 7o h,)] 

wpTo (02 'y+TaSb 
[ (2~ ~)+('"')(~+'T~)+(i~,)'(T~T)]. (14) 

The last bracketed set of terms on the right-hand side can be neglected within the 
framework of the usual assumptions of the linear theory. Thus, the energy equation 
becomes 

In a manner similar to that of Boley and Weiner, the free energy function can 
be expanded in power series of the three strain invariants and the dimensionless 
temperature change 8, where 

e = (T - T~)/T~ w 

and where TO is the stress-free temperature of the body. With this expansion and 
with the usual definition of the specific heat at constant deformation, given as 

(17) 

the stress-strain-temperature relation (11) becomes 

utj = al srj + a2 (~1~ sij) + a3 (I8 srj - W) + a7 (e stj) 

+ higher order terms. 

(13) 

The energy equation (15) becomes 

W,,i = -&s{ 2al3 + W7L + 6m5 e + . . . ><T + TOP) -&7811 

+ all (h I8 - Ed + %4 1, b + 2%7 e 6tj + Ulg [I8 (h b - ~63) f 11, &] 

+ mr (et3 yl: - '$3 1, + hf w + 3@24 182 Slf + . * $6, + TO hj) (19) 

and the specific heat CB is given as 

(20) 
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where the various a,‘s are coefficients in the series for +, and where Ic and II8 are 
the first two pr’ncipal strain invariants. 

Linearized form of the governing equa.tions 

The usual linear theory of thermoelasticity is obtained by considering the case 
where only terms linear in strain ~(5 and temperature change 9 are retained in (18) 
and (12). This allows the coefficients al, as, as and a7 to be determined in terms of 
the Lame elastic constants, h and p, with the results 

al = 0, a2 = (A + W/2, 

as = - 2~, a7 = - (3X + +) do, > 
c-41) 

Substitution of these results into (18) yields the familar linear constitutive equation 

W = h E&/c &j + 2P E$j - (3A + 2P) a (T - To) 313. (22) 

Assuming a constant specific heat and small 8, the linearized energy equation 
becomes 

AT, u = PCE (p + 70 p) + (3h + 2~) z To (& + 70 GE). (23) 

The equation of motion for a linear elastic continuum, in the absence of body 
forces, is that given by (1) and repeated here 

P~~~=(X+~)U~,~~++~U(,H-(~~+~~L)GCT,~ (24) 

where ug is the displacement vector. Equations (22) through (24) are the governing 
equations of what is referred to here as a generalized dynamical theory of 
thermoelasticity. 

3. APPLICATION TO ONE-DIMENSIONAL PROBLEMS 

The one-dimensional problem, due to its relative simplicity, has had a broad 
treatment in the literature. The particular problem to be treated here is that of an 
isotropic homogeneous thermoelastic half-space. The boundary conditions con- 
sidered are the same as in the wellknown paper by BOI.ZY and TOLINS (1962), 
whose results are used for comparison with the present results. 

Non-dimensional form of the governing equations 

The governing equations can be put in a more convenient form by using non- 
dimensional variables 

1 
B = (T - T,,)/To; Z= o/(3h + 2~) aTo ; (25) 

IY== [p(~~(3A+&)aToF]u' J 
These variables, when substituted into the governing equations for the one- 
dimensional case, yield the following non-dimensional forms 
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Energy equation : 0” - 8 - j3br = t? (0’ + jltf’) ( 26) 

Equation of motion : u” - u = 8’ (97) 

Stress equation : .Z = u’ - 8 (28) 

where the primes denote differentiation with respect to z and the dots denote 
differentiation with respect to 7. 

In (26) Z represents the wellknown thermoelastic coupling constant, 

E = (3h + 9~)~ a2 To 

(A + 2L‘)pE ’ 
(2% 

and ,9 represents the non-dimensional form of the relaxation time, which will be 
called the re&ation constant, 

Effect of temperature on th coupling and relaxation constants 

It is an experimental fact that both the specific heat cz and the coefficient of 
thermal expansion a approach zero as the temperature approaches zero, while the 
ratio ca/a approaches a constant which is characteristic of the medium. Conse- 
quently, the magnitude of e’ approaches zero for very low temperatures as is 
indicated by (29). The energy equation then reduces to 

elf -B-@Lo, (81) 
indicating that there is no coupling between thermal and mechanical disturbances 
at very low temperatures. For slow variations of 0 with time, with small values of 
8, the middle term of the equation dominates and the heat flow is a diffusion type 
process. However, ,if the magnitude of p is large, with slow variations in 0, then the 
spatial variations of 0 will proceed as wavelike motions. Consequently, the transport 
of thermal energy in the medium can be considered to be either a diffusion process 
or a wavelike process, depending on the magnitude of the relaxation constant /3. 

The relaxation constant fl is expressed in terms of the relaxation time, 70, 
whose order of magnitude can only be determined by considering the mechanism 
by which thermal energy is carried in the medium. Thermal energy is transported 
in a solid by two different mechanisms ; by quantized electronic excitations which are 
called free electrons and by the quanta. of lattice vibrations which are called phonons. 
These quanta undergo collisions of a lossful nature, giving rise to thermal resistance 
in the medium. The relaxation time 70 is associated with the average communica- 
tion time between these collisions for the commencement of resistive flow. 

The magnitude of the relaxation time has been estimated for particular types 
of collision processes. PEIERLS (1955) states that at room temperature the longest 
collision time occurs for a phonon-electron interaction and is of the order of lo-11 
set, while the collision times of phonon-phonon and free electron interactions 
are both of the order of 10-13 sec. However, these times are reduced by imperfec- 
tions and impurities (e.g. alloying substances) existing in the medium, so that the 
mean relaxation time 70 is not generally known. Consequently, more work is 
needed to establish the magnitude of 70 before the theory presented here can be 
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applied directly to a specific problem. However, something can be said concerning 
the order of magnitude of TO for certain temperature ranges. 

At very low temperatures it is known that the collision time increases. In this 
temperature range the magnitude of the relaxation constant becomes significant 
and the energy equation predicts a wave-type phenomenon, ‘ Second Sound’. 
OSBORNE (1950), CHESTER (1963) and BROWN et al. (1966) use this form of the energy 
equation (31) to interpret experimental results of heat pulse propagation in 
AlsOs crystals and liquid helium at very low temperatures. PROHOFSKY and 
KRUMHANSL (1964) discuss the feasibility of experimental observation of thermal 
pulses in dielectric materials, indicating the optimum temperature and frequency 
range for the observation of Second Sound. 

The magnitudes of the coupling and relaxation constants were calculated over 
a range of intermediate and high temperatures by LORD (1966). The values of ,3, 
using a representative value of TO equal to 16-13 set, become very small at high 
temperatures, reducing the governing equations of the generalized theory to the 
conventional coupled theory of thermoelasticity. Both these theoretically predicted 
values of the relaxation constant and the success of the coupled theory indicate that 
300’K (i.e. room temperature) would be considered ‘ high temperature.’ Further- 
more, the product Zp is much less than either d or p in the intermediate range and 
at room temperatures. Thus, the U/-term can be neglected in the energy equation 
of the generalized theory, (26). 

The possibility of a material which obeys the generalized theory in the inter- 
mediate temperature range is now suggested. Although the existence of such a 
material would need to be verified experimentally, it is still of interest to investigate 
the effect of the relaxation constant on the behaviour of the material. The solution 
of the boundary va.lue problem which follows serves this interest. 

A problem 

Consider an initially quiescent, isotropic, thermoelastic half-space initially at a uniform 
temperature, T = To. At time t = 0, the free surface z = 0 is subjected to a step-strain. This 
strain is maintained at the surface and, at the same time, the temperature at the free surface is 
held constant at T = TO. As a result of the mechanical disturbance a strain wave is propagated 
in the m-direction. This sudden change in strain affects the temperature field, causing thermal 
disturbances to be propagated in the medium. These two disturbances do not act independently, 
but are related according to the governing equations derived above. 

The initial and boundary conditions may be expressed as 

Initial conditions : 19 (z, 0) = 0; U (z, 0) = U’ (z, 0) = 0 (82) 

Boundary conditions : 0 (0, T) = 0 ; U’ (0, T) = H (7) (33) 

where H (7) represents the Heaviside function. The additional condition of boundedness at in- 
finity is also imposed on B and U’. 

The governing equations for the temperature and displacement fields, (26) and (27), are oon- 
sidered for the case where the strain acceleration term u is neglected as discussed above. These 
expressions can be uncoupled, i.e. can be written as two separate differential equations with only 
one of the dependent variables appearing in each equation. The resulting differential equations are 
of fourth order 

~““-(l+/I)P-(l+E)&‘+B+~B=o, 

U”” - (1 + fi) W - (1 + E) ti” -+ u + #fG = 0. 1 
(24) 
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If (94) are operated on by the Laplace transform, there results the ordinary differential equetions 
in the transform domain 

8”” - p [P (I + B) + (1 + E)] B” + ps (P + BP? B = 0, 

w - p [P (1 + B) + (1 + Z)] D” + PZ 0, + BP? ?I = 0, > 
(85) 

where B (z, p) and 0 (z, p) are the Laplace transforms of B (z, T) and U (z, T), respectively, and 
p is the transform variable. The boundary conditions in the transform domain become 

B(O,P) = 0; D’(O,P) = UP (86) 

with $? (z, p) and p (z, p) bounded for large z. Equations (95) and (90) can be solved to give the 
exact solutions for temperature and strain in the transform domain 

B(z,p) = E 
e--cIlz. - e--LIzz 

ale - a$ 1 P7) 
ut tz, p) = La12 - CP -I- gPa)] e-w - [a9 - (p + fipa)] e-aaz 

P (a9 - aa2) 
where 

a1.a = 

[ 
$ ((1 + f!?) P + (1 + 3 f 4{[(1 + B) P + (1 + Q]Z - 4 (P + BPZ)}) 1 (99) 

Special case 

The solutions for temperature and strain, given by (97) and (99), can be inverted and written 
in clued form if a particular value of 5 is chosen. These solutions allow certain conclusions to be 
drawn concerning the general case where fi is kept as a parameter. 

When the following psrticular value for the relaxation constant is selected, 

B = I/(1 + e”), 
then (99) yields 

ais = p2 + p/p; aa2 = bpBp2. 

These results can be put in (97) and (38) which, with some algebraic manipulation, become 

?T(Z,P) = B 
exp ( - d(B) ~4 

P 

_ exd- 1/M) z/k? (1 -NJ exp {- [p + l/B (1 - NJ l/(S) z) 

P + l/B (1 - 6) 

exp { - d/[@ + V4V - W4W] a} 

P 

+ exp [ - 1/ ({p + l/S (1 - 8) - (B + 1)/2S (1 - B))” - WW”)z] 

P -I- l/8 (1 - B) > 
, 

B (2, P) = - (1 - Is) 
{ 

exp [ - d(8) pzl 

P 

_ exp [ - z/W z/S (1 - @I ew (- [P f l/B (1 - /J)l l/(S) z) 

P + US (1 - B) 

exp { - 1/[@ + VW - WWFJ z} - 
P 

+ exp [ - z/({p -I- l/S (1 - 8) - (B + lC43 (1 - IQ2 - W2W) zl 

P + l/B (1 - 8) 

. 

1 

(MO) 

(41) 

(49) 

(49) 
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Equations (42) and (48) are expressed in terms of known transforms (for example, see ROBERTS 
and K~WFMAN 1966). Thus, these equations can be inverted directly to give the followiug closed 
form solutions for the nondimensional tempenrture and strain fields in an isotropic, homogeneous, 
elastic solid 

U’ (z, T) = j3 Ei (z, T) H (7 - 1/ (j3) z) + (z,1) + YFs (2, T)] Zf (7 - N} , (4) 

~9 t% 4 = - (1 - B) {FI (2, 7) Z-f (7 - l/t/d a) + [E”a (2, ~2) - Fa (5 T,] H (T - z,}, (‘w 

where PI (2, 7) = 1 - exp [ - (7 - 2/V) Q//J (1 - 811 I (48) 

Fa (2, 7) = exp [ - ~18 (1 - 8~1 
{ 

exp [z (1 + ,W49 (1 - B)] 

7 

+ $ 
s 

exp [t (1 + B)PP (1 - B)] 
+iiw~~)}&~ (4~) 
-p , 

d(12 - 3) 
z 

7 

Fs (2, 4 = exp [ - z/W] + cfl 
s 

exp [ - t/2~] 

P 

and where Zl (z) is the modified Bessel function of the first kind and of order one, and H (I - k) is 
the Heaviside step-function. 

Although the integrals appearing in these equations are not solved explicitly, the expressions 
are readily amenable to numerical computation. The evaluation of theseAequations is considered 
in the following section. 

Evaluation of the dxact solulions for the special case 

Inspection of the solutions (44) and (46) reveals that they consist of two wave fronts propagating 
in the z-direction at different velocities. The function H (T - 1/(b) z) represents a wave front 
travelling in the s-direction with a constant velocity of l/1/( /3), which is the velocity of the thermal 
disturbance. Hence, this front is called a t.hermal wwe front. Similarly, a strain wwe front is 
associated with the function H (7 - z), and travels with a constant velocity equal to unity. Thus, 
the thermal wave front precedes the strain wave front for this case, since p = l/(1 + 8) < 1. 

The magnitude of the strain at the strain wave front can be obtained by setting z equal to 7 
in (44). Taking cognizance of the properties of the Heaviside function, the magnitude of the strain 
on either side of the wave front can be determined. Thus, the discontinuity in the strain across the 
strain wave front is obtained as 

u’(z, 7) IT&C - u’ (2, 7) [7=E_ = e-T/zp. (42) 

This discontinuity travels with the strain wave front, with a speed equal to unity, and its magnitude 
decays exponentially. Moreover, it can be shown that the total magnitude of the strain at the 
strain wave front rapidly approaches an asymptotic value given by 

lim u’(z, 7) I$=, = /3 (W 
r+oD 

The behaviour of the strain at the thermal wave front is treated in a similar way. Setting z equal 
to z/z/p in (Ilk), it is seen that the magnitude of the strain vanishes at the thermal wave front 

U’ 6% 7) Iz=r,&l = 0. (51) 

The behaviour of the temperature can be studied in a similar way to show : (i) there is no 
‘ jump ’ in temperature across the strain wave front ; (ii) the total magnitude of the temperature 
at the strain wave front rapidly approaches an asymptotic value given by 

lim B (2, 7) IEn,-= - (1 - 8); (52) 
+-+m 

(iii) the magnitude of the temperature vanishes at the thermal wave front. 
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Thus, the strain exhibits a ‘ jump ’ at the strain wave front while the temperature is continuous 
across this front ; and both temperature and strain vanish at the thermal wave front. 

4. COMPARISON OF RESULTS WITH PREVIOUS THEORY 

The properties of the solutions for the special case treated here are shown in 
Fig. 1. The solution at ~1 corresponds to a short-time solution where the strain 
‘ jump ’ is still significant, while the solution at 7s gives the form of the solution for 
longer times. The magnitudes of the strain and temperature are given in terms of 
the coupling constant E and the relaxation constant ,9. 

Fm. 1. Form of solution for short and long time, present theory. /I = l/(1 + E). 

Boley and Tolins’ solution, as displayed by WILMS (1964), is shown in Fig. 2. 
A comparison of the two figures shows that both solutions predict the same asympto- 
tic values for strain and temperature and that there is no ‘ jump ’ in temperature 
at the strain wave front. The ‘ jump ’ in strain at the strain wave front is different 
in the two cases. The fundamental difference in the two solutions, however, is that 
Boley and Tolins’ solution shows a precursory effect extending forward to infinity, 
while in the present result this effect is replaced by a thermal wave front preceding 
the strain wave front. 

A plot of the computed values of U’ (a, T) and 8 (z, T) is given in Fig. 3. for a 
coupling coefficient E equal to 0.08. This value corresponds to 2024s -T4 alminium 
at room temperature (BOLEY and WEINER, 1900). The plot illustrates the rapid 
decay in the strain ‘ jump ’ at the strain wave front. At T = 20 both strain and 
temperature have reached their asymptotic magnitudes and the ‘ jump ’ in strain 
has become negligibly small. It should be noted that this value of T corresponds 
to 1.2 x lo-10 set in real time. Moreover, the strain wave front at z = 7 = 20 
corresponds to a distance of 2 x 10mK in. Hence, for the case considered, the strain 
and the thermal disturbances rapidly attain the form of single wave fronts travelling 
through the medium with a velocity of l/1//3 in the nondimensional domain. 

The actual strain corresponding to a value of U’ equal to O-97 is 0.0194 in./in.for 
aluminium. Although this magnitude of strain exceeds the yield limit for most 
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FIG. 2. Form of solution for short and long time, BOLEY and TOLINS (as presented by 
WILMS). 

aluminimn alloys, the solution is still representative of the form of solution in the 

elastic range of the medium. The temperature change associated with this strain 

is 9°K. 

I 
I 
1 1x20 

i 
I I I I II I 11 I 

*'*0059~-- -I 41 
? 0 2 4 6 6%? 12 14 16 I6 
E 0.0 L 

cn 
-0.05 - 

? 

FIG. 8. Variation of strain aud temperature with distance at different times. 
j3 = i/(1 + Z), E = 0.08. 

5. CONCLUSIONS 

The effects of temperature on the relaxation and coupling constants discussed 
in Section 8 and the form of the exact solution obtained in Section 4, lead to the 

following Conclusions 
(i) At very low temperatures the coupling constant Z becomes zero. Conse- 

quently, the coupling between temperature and strain becomes negligible at temper- 
atures near absolute zero. 
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(ii) At high temperatures (room temperatures for the materials considered) 
the relaxation constant ,9 of the generalized theory becomes very small. Thus, at 
room temperatures the generalized theory reduces to the conventional coupled 
theory of thermoelasticity. 

(iii) The solution obtained by applying the generalized theory (in which the 
tf’ term is neglected in the energy equation) to a particular boundary value problem 
is generally similar to that obtained using the conventional coupled theory of 
thermoelasticity but is different in one important respect, namely, the generalized 
theory predicts a thermal wave front having a finite propagation velocity. Hence, 
it is expected that when applied to other problems, the generalized theory should 
yield solutions not very different in form from those predicted by the conventional 
coupled theory, except where the propagation of thermal energy is predominant. 

(iv) Finally, the generalized theory presented in this work serves to eliminate 
the paradox of an infinite propagation velocity inherent in the conventional coupled 
theory of thermoelasticity, and indicates the effect of neglecting higher order terms 
in the heat conduction equation. 
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