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Abstract

The model of the two-dimensional equations of generalized thermo-viscoelasticity with two relaxation
times is established. The state space formulation for two-dimensional problems is introduced. Laplace and
Fourier integral transforms are used. The resulting formulation is applied to a problem of a thick plate
subject to heating on parts of the upper and lower surfaces of the plate that varies exponentially with time.
The Fourier transforms are inverted analytically. A numerical method is employed for the inversion of the
Laplace transforms. Numerical results are given and illustrated graphically for the problem considered.
Comparisons are made with the results predicted by the coupled theory. � 2002 Elsevier Science Ltd. All
rights reserved.

1. Introduction

Since the work of Maxwell, Boltzmann, Voigt, Kelvin and others, the linear viscoelasticity
remains an important area of research. Gross [1], Staverman and Schwarzl [2], Alfery and Gurnee
[3] and Ferry [4] investigated the mechanical-model representation of linear viscoelastic behavior
results. Solution of boundary value problems for linear viscoelastic materials including temper-
ature variations in both quasistatic and dynamic problems made great strides in the last decades,
in the work of Biot [5,6], Morland and Lee [7], Tanner [8] and Huilgol and Phan-Thien [9]. Bland
[10] linked the solution of linear viscoelasticity problems to corresponding linear elastic solutions.
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Notable works in this field were the works of Gurtin and Sternberg [11], Sternberg [12] and
Ilioushin [13] offered an approximation method for the linear thermal viscoelastic problems. One
can refer to the book of Ilioushin and Pobedria [14] for a formulation of the mathematical theory
of thermal viscoelasticity and the solutions of some boundary value problems, as well as, to the
work of Pobedria [15] for the coupled problems in continuum mechanics. Results of important
experiments determining the mechanical properties of viscoelastic materials were involved in the
book of Koltunov [16].
The classical uncoupled theory of thermoelasticity predicts two phenomena not compatible

with physical observations. First, the equation of heat conduction of this theory does not contain
any elastic terms contrary to the fact that elastic changes produce heat effects. Second, the heat
equation is of parabolic type predicting infinite speeds of propagation for heat waves.
Biot [17] formulated the theory of coupled thermoelasticity to eliminate the paradox inherent in

the classical uncoupled theory that elastic changes have no effect on the temperature. The heat
equations for both theories of the diffusion type predict infinite speeds of propagation for heat
waves contrary to physical observations. The theory of generalized thermoelasticity with two
relaxation times was first introduced by M€uuller [18]. Green and Laws [19], Green and Lindsay

Nomenclature
k;l Lame’s constants
q density
CE specific heat at constant strain
t time
T absolute temperature
T0 reference temperature chosen so that jT � T0j � 1
rij components of stress tensor
eij components of strain tensor
Sij components of stress deviator tensor
eij components of strain deviator tensor
ui components of displacement vector
RðtÞ relaxation function
k thermal conductivity
A; b; a� empirical constants
K ¼ k þ 2

3
l bulk modulus

c20 ¼ K=q
s0; m relaxation times
aT coefficient of linear thermal expansion
c ¼ 3KaT
e ¼ c=qCE
T0 ¼ qc20d0=c
g0 ¼ qCE=k
d0 non-dimensional constant
e1 ¼ d0e
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(cf. [20]) then introduced a more explicit version and independently by S�uhubi [21]. In this theory
the temperature rates are considered among the constitutive variables. This theory also predicts
finite speeds of propagation as in Lord and Shulman’s theory of generalized thermoelasticity with
one relaxation time [22]. It differs from the latter in that Fourier’s law of heat conduction is not
violated if the body under consideration has a center of symmetry. Erbay and S�uhubi [23] studied
wave propagation in cylinder. Ignaczak [24,25] studied a strong discontinuity wave and obtained a
decomposition theorem. Ezzat [26] has also obtained the fundamental solution for this theory.
Ezzat and Othman [27] have established the model of two-dimensional equations of generalized
magneto-thermoelasticity with two relaxation times in a medium of perfectly conducting medium.
In dealing with generalized or coupled thermoelastic problems the potential function ap-

proach is often used. This is not always the most suitable approach. As was discussed in [28],
this is mainly due to two reasons. The first is that it is preferable to formulate the problem in
terms of the quantities with physical meaning since the boundary and initial conditions of the
problem are related directly to these quantities. The second reason is that the solution for a
physical problem formulated in natural variables is convergent, while that of a potential
function is, unfortunately, not always so. The first writers to introduce the state space for-
mulation in coupled and generalized thermoelasticity were Bahar and Hetnarski [28] and
Anwar and Sherief [29], respectively. Ezzat [30] introduces the state space approach to gen-
eralized magneto-thermoelasticity with two relaxation times in a medium of perfect conduc-
tivity. Ezzat et al. [31] introduce the state space approach to two-dimensional problems of
generalized electromagneto-thermoelasticity with two relaxation times. Ezzat et al. [32,33]
applied the state space approach to one-dimensional problems of generalized thermo-visco-
elasticity.
In the present work we shall formulate the state space approach to two-dimensional problems

of thermo-viscoelasticity with two relaxation times in the absence of heat sources. The resulting
formulation is applied to a problem of a plate with thermo-isolated surfaces subject to time-de-
pendent compression.

2. Formulation of the problem

We shall consider a thermo-viscoelastic solid occupying the region �16 x61. The governing
equations for generalized thermo-viscoelasticity with two relaxation times consist of:

the equation of motion

rij;j ¼ q€uui; ð1Þ

the generalized heat conduction equation

KT;ii ¼ qCE
o

ot

�
þ s0

o2

ot2

�
T þ cT0 _ee; ð2Þ

the constitutive equation [15,34]
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Sij ¼
Z t

0

Rðt � sÞ oeijð�xx; sÞ
os

ds ¼ R̂RðeijÞ ð3Þ

with the assumptions

rijð�xx; tÞ ¼
orijð�xx; tÞ

ot
¼ 0; eijð�xx; tÞ ¼

oeijð�xx; tÞ
ot

¼ 0; �1 < t < 0; ð4Þ

where

Sij ¼ rij �
rkk
3

dij; eij ¼ eij �
e
3

dij; e ¼ ekk; r ¼ rkk
3

; rij ¼ rji; �xx 
 ðx; y; zÞ

and RðtÞ is the relaxation function which can be taken [16,35] in the form:

RðtÞ ¼ 2l 1

�
� A

Z t

0

e�btta
��1 dt

�
; Rð0Þ ¼ 2l; ð5Þ

where 0 < a� < 1; A > 0; b > 0.
Assuming that the relaxation effects of the volume properties of the material are ignored, one

can write for the generalized theory of thermo-viscoelasticity with two relaxation times

r ¼ K½e� 3aTðT � T0 þ m _TT Þ�: ð6Þ

Substituting Eq. (6) into Eq. (3), we obtain

rij ¼ R̂R eij
�

� e
3
dij
�
þ Kedij � cðT � T0 þ m _TT Þdij: ð7Þ

From Eqs. (1) and (7), it follows that

q€uui ¼ R̂R
1

2
r2ui

�
þ 1
6
e;i

�
þ Ke;i � cðT � T0 þ m _TT Þ;i: ð8Þ

We shall consider only the simplest case of the two-dimensional problem. We assume that all
causes producing the wave propagation are independent of the variable z and that waves are
propagated only in the xy-plane. Thus all quantities that were appearing in Eqs. (1)–(8) are in-
dependent of the variable z. Then the displacement vector has components ðuðx; y; tÞ; vðx; y; tÞ; 0Þ
(plane strain problem).
Let us introduce the following non-dimensional variables:

x0 ¼ c0g0x; y0 ¼ c0g0y; u0 ¼ c0g0u; v0 ¼ c0g0v; t0 ¼ c20g0t; s00 ¼ c20g0s0;

v0 ¼ c20g0m; h ¼ cðT � T0Þ
qc20

; R0 ¼ 2

3K
R; r0

ij ¼
rij
K

:
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In terms of these non-dimensional variables, Eqs. (2), (7) and (8), taking the following form
(dropping the dashes for convenience):

o2u
ot2

¼ R̂RðuÞ þ oe
ox

� oh
ox

�
þ m

o2h
oxot

�
; ð9Þ

o2v
ot2

¼ R̂RðWÞ þ oe
oy

� oh
oy

�
þ m

o2h
oy ot

�
; ð10Þ

r2h ¼ o

ot

�
þ s0

o2

ot2

�
h þ ed0

oe
ot

; ð11Þ

rxx ¼ R̂R
ou
ox

�
� 1
2

ov
oy

�
þ e� 1

�
þ m

o

ot

�
h; ð12Þ

ryy ¼ R̂R
ov
oy

�
� 1
2

ou
ox

�
þ e� 1

�
þ m

o

ot

�
h; ð13Þ

rzz ¼ � 1
2
R̂RðeÞ þ e� 1

�
þ m

o

ot

�
h; ð14Þ

rxy ¼
3

4
R̂R

ou
oy

�
þ ov
ox

�
; ð15Þ

where

u ¼ o2u
ox2

þ 3
4

o2u
oy2

þ 1
4

o2v
oxoy

; ð16Þ

W ¼ o2v
oy2

þ 3
4

o2v
ox2

þ 1
4

o2u
oxoy

; ð17Þ

e ¼ ou
ox

þ ov
oy

: ð18Þ

Taking Laplace transform defined by the relation

�ff ðx; y; sÞ ¼ L f ðx; y; tÞf g ¼
Z 1

0

e�stf ðx; y; sÞdt ð19Þ

and the Fourier transform

�ff �ðq; y; sÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
e�iqx �ff ðx; y; sÞdx ð20Þ
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on both sides of Eqs. (11)–(17), we obtain

s2�uu� ¼ s�RR
�
� q2�uu� þ 3

4
D2�uu� þ iq

4
D�vv�

�
þ iq�ee� � iqð1þ msÞ�hh�; ð21Þ

s2�vv� ¼ s�RR D2�vv�
�

� 3
4
q2�vv� þ iq

4
D�uu�

�
þ D�ee� � ð1þ msÞD�hh�; ð22Þ

�ee� ¼ iq�uu� þ D�vv�: ð23Þ

Eliminating u and v between Eqs. (21), (22) and using (23), we obtain the following equations:

s2�ee� ¼ ðs�RRþ 1ÞðD2 � q2Þ�ee� ð1þ msÞðD2 � q2Þh; ð24Þ

ðD2 � q2Þ�hh� ¼ sð1þ s0s2Þ�hh� þ e1s�ee�; ð25Þ

�rr�
xx ¼ s�RR iq�uu�

�
� 1
2
D�vv�

�
� ð1þ msÞ�hh� þ �ee�; ð26Þ

�rr�
yy ¼ s�RR D�vv�

�
� iq
2
�uu�
�
� ð1þ msÞ�hh� þ �ee�; ð27Þ

�rr�
zz ¼ 1

�
� 1
2
s�RR
�
�ee� � ð1þ msÞ�hh�; ð28Þ

�rr�
xy ¼

3

4
s�RRðD�uu� þ iq�vv�Þ ð29Þ

and

�RR ¼ L RðtÞf g ¼ 4l
3K

1

s

"
� ACða�Þ
sðsþ bÞa�

#
; s > 0; ð30Þ

where Cða�Þ is the gamma function, LfR̂Rðf Þg ¼ s�RR �ff :

3. State space formulation

We take as state variables in the physical domain the quantities e; h;De;Dh. In the transformed
domain the state space variables are taken as �ee�; �hh�;D�ee�;D�hh� where Eq. (24) together with Eq. (25)
gives

D2�ee� ¼ ½as2 þ q2 þ ae1sð1þ msÞ��ee� þ asð1þ msÞð1þ s0sÞ�hh�; ð31Þ

D2�hh� ¼ ½sð1þ s0sÞ þ q2��hh� þ e1s�ee�; ð32Þ

where a ¼ 1=ð1þ s�RRÞ.
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Eqs. (31) and (32) can be written in matrix form as follows:

d~vvðx; y; sÞ
dy

¼ ~AAðq; sÞ~vvðq; y; sÞ; ð33Þ

where

~AAðq; sÞ ¼

0 0 1 0
0 0 0 1

as2 þ q2 þ ae1p apð1þ s0sÞ 0 0
e1s p þ q2 0 0

2
664

3
775; ~vvðx; y; sÞ ¼

�ee�ðx; y; sÞ
�hh�ðx; y; sÞ
D�ee�ðx; y; sÞ
D�hh�ðx; y; sÞ

2
6664

3
7775

and p ¼ sð1þ msÞ.
The formal solution of system (33) can be written in the form

~vvðq; y; sÞ ¼ expðy ~AAðq; sÞÞ~vvðq; y0; sÞ; ð34Þ

where y0 denotes any arbitrary chosen initial value for y.
We shall use the well-known Cayley–Hamilton theorem to find the form of the matrix ~AAðq; sÞ.

The characteristic equation of the matrix ~AAðq; sÞ can be written as

k4 � ½as2 þ 2q2 þ pð1þ ae1Þ�k2 þ ½q4 þ q2ðp þ ae1p þ as2Þ � ae1spð1þ s0sÞ� ¼ 0: ð35Þ

The roots of this equation, namely, k21 and k
2
2, satisfy the relations

k21 þ k22 ¼ as2 þ 2q2 þ pð1þ ae1Þ; ð36Þ

k21k
2
2 ¼ q4 þ q2½as2 þ pð1þ ae1Þ� � ae1spð1þ s0sÞ: ð37Þ

Using Cayley–Hamilton theorem, the finite series representing can be truncated to the fol-
lowing form:

expðy ~AAðq; sÞÞ ¼ ~LLðq; y; sÞ ¼ a0~II þ a1 ~AAþ a2 ~AA2 þ a3 ~AA3; ð38Þ

where ~II is the unit matrix of order 4 and a0; . . . ; a3 are some parameters depending on y, q and s.
By Cayley–Hamilton theorem, the characteristic roots �k21 and �k22 of the matrix ~AAmust satisfy

the equations:

expðk1yÞ ¼ a0 þ a1k1 þ a2k21 þ a3k31 ;
expð�k1yÞ ¼ a0 � a1k1 þ a2k21 � a3k31 ;
expðk2yÞ ¼ a0 þ a1k2 þ a2k22 þ a3k32 ;
expð�k2yÞ ¼ a0 � a1k2 þ a2k22 � a3k32 :
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The solution of the above system is given by

a0 ¼
k21 coshðk2yÞ � k22 coshðk1yÞ

ðk21 � k22Þ
;

a1 ¼
1

ðk21 � k22Þ
k21
k2
sinhðk2yÞ

�
� k

2
2

k1
sinhðk1yÞ

�
;

a2 ¼
1

ðk21 � k22Þ
½coshðk1yÞ � coshðk2yÞ�;

a3 ¼
1

ðk21 � k22Þ
1

k1
sinhðk1yÞ

�
� 1

k2
sinhðk2yÞ

�
:

ð39Þ

Substituting expressions (39) into (38) and computing ~AA2 and ~AA3 we obtain, after repeated use of
Eqs. (36) and (37), the elements ð‘ij; i; j ¼ 1; 2; 3; 4Þ of the matrix ~LLðq; y; sÞ as

‘11 ¼
1

ðk21 � k22Þ
ðk21
�

� q2 � pÞ coshðk1yÞ � ðk22 � q2 � pÞ coshðk2yÞ
�
;

‘12 ¼
apð1þ s0sÞ
ðk21 � k22Þ

coshðk1yÞ½ � coshðk2yÞ�;

‘13 ¼
1

ðk21 � k22Þ
ðk21 � q2 � pÞ

k1
sinhðk1yÞ

�
� ðk22 � q2 � pÞ

k2
sinhðk2yÞ

�
;

‘14 ¼
apð1þ s0sÞ
ðk21 � k22Þ

1

k1
sinhðk1yÞ

�
� 1

k2
sinhðk2yÞ

�
;

‘21 ¼
e1s

ðk21 � k22Þ
coshðk1yÞ½ � coshðk2yÞ�;

‘22 ¼
1

ðk21 � k22Þ
ðk21
�

� q2 � pÞ coshðk2yÞ � ðk22 � q2 � pÞ coshðk1yÞ
�
;

‘23 ¼
e1s

ðk21 � k22Þ
1

k1
sinhðk1yÞ

�
� 1

k2
sinhðk2yÞ

�
;

‘24 ¼
1

ðk21 � k22Þ
ðk21 � q2 � pÞ

k2
sinhðk2yÞ

�
� ðk22 � q2 � pÞ

k1
sinhðk1yÞ

�
;

‘31 ¼
1

ðk21 � k22Þ
ðas2 þ q2 þ pae1Þðk21 � q2 � pÞ þ pae1sð1þ s0sÞ
� �

k1
sinhðk1yÞ

�

�
ðas2 þ q2 þ pae1Þðk22 � q2 � pÞ þ e1sapð1þ s0sÞ
� �

k2
sinhðk2yÞ

�
;

‘32 ¼
apð1þ s0sÞ
ðk21 � k22Þ

k1 sinhðk1yÞ½ � k2 sinhðk2yÞ�;

‘33 ¼
1

ðk21 � k22Þ
ðk21
�

� q2 � pÞ coshðk1yÞ � ðk22 � q2 � pÞ coshðk2yÞ
�
;
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‘34 ¼
apð1þ s0sÞ
ðk21 � k22Þ

coshðk1yÞ½ � coshðk2yÞ�;

‘41 ¼
e1s

ðk21 � k22Þ
½k1 sinhðk1yÞ � k2 sinhðk2yÞ�;

‘42 ¼
1

ðk21 � k22Þ
ðq2 þ pÞðq2 þ p � k22Þ þ ape1sð1þ s0sÞ
� �

k1
sinhðk1yÞ

�

�
ðq2 þ pÞðq2 þ p � k21Þ þ ape1sð1þ s0sÞ
� �

k2
sinhðk2yÞ

�
;

‘43 ¼
e1s

ðk21 � k22Þ
coshðk1yÞ½ � coshðk2yÞ�;

‘44 ¼
1

ðk21 � k22Þ
ðk21
�

� q2 � pÞ coshðk2yÞ � ðk22 � q2 � pÞ coshðk1yÞ
�
:

ð40Þ

It should be noted here that we have repeatedly used Eqs. (36) and (37) in order to write (40) in
the simplest possible form.

4. Application

We consider the problem of a thick plate of finite high 2L and of infinite extent with thermal
isolated surfaces y ¼ �L subjected to time-dependent compression. The initial state of the plate is
assumed to be quiescent. The surfaces of the plate are taken to be traction free. Choosing the y-
axis perpendicular to the surface of the plate with the origin coinciding with the middle plate, the
region X under consideration becomes

X ¼ fðx; y; zÞ : �1 < x < 1; �L6 y6 L; �1 < z < 1g:

The boundary conditions of the problem in the transformed domain are

o�hh�

oy
¼ 0 on y ¼ �L; ð41Þ

�rr�
xy ¼ 0 on y ¼ �L; ð42Þ

�rr�
yy ¼ �P0ðx; tÞ on y ¼ �L: ð43Þ

We note that due to the symmetry of the problem the temperature h and the displacement
component u are even functions of y, while the displacement component v is an odd function of y.
Consequently, the dilatation e is an even function of y.
Let us denote the components of the transformed state vector at the upper surface y ¼ L by �ee�L,

�hh�
L, D�ee

�
L and D�hh�

L.
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Using Eqs. (27) and (29), conditions (41)–(43) reduce to

D�ee�L ¼ 0; ð44Þ

D�uu�L þ iq�vv�L ¼ 0; ð45Þ

s�RR D�vv�L

�
� iq
2
�uu�L

�
� ð1þ msÞ�hh�

L þ �ee�L ¼ �P0ðL; tÞ: ð46Þ

The solution of the problem is given by Eq. (33), with y0 chosen as zero for convenience. Thus,
two components of the initial state vector ~vv0 ¼ ~vvðq; 0; sÞ are known as

D�ee�0ðq; 0; sÞ ¼ D�hh�
0ðq; 0; sÞ ¼ 0: ð47Þ

The remaining two components ð�ee�0ðq; 0; sÞ; �hh
�
0ðq; 0; sÞ ¼ 0Þ are obtained from the boundary

conditions (44)–(46).
Applying Eq. (33) with y ¼ L; y0 ¼ 0 and using Eq. (47), we arrive at

�ee�ðq; y; sÞ ¼ ‘11�ee�0 þ ‘12 �hh
�
0; ð48Þ

�hh�ðq; y; sÞ ¼ ‘21�ee�0 þ ‘22�hh
�
0: ð49Þ

Fig. 1. Temperature distribution on the surface.
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In case of symmetry these equations reduce to

�ee�ðq; y; sÞ ¼ 1

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1fðk2i � q2 � pÞ�ee�h þ ap�hh�
0g coshðkiyÞ; ð50Þ

�hh�ðq; y; sÞ ¼ 1

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1fe1p�ee�0 � ðq2 þ as2 þ pae1 � k2i Þ�hh
�
0g coshðkiyÞ: ð51Þ

Substituting Eq. (23) into Eq. (21), we obtain

ðD2 � k23Þ�uu� ¼ iqð�hh
� � a1�ee�Þ; ð52Þ

where k23 ¼ a0s2 þ q2, a0 ¼ 4=3s�RR, a1 ¼ a0 þ 1
3
.

Substituting Eqs. (50) and (51) into the R.H.S of Eq. (52) and solving the resulting differential
equation, we get

�uu� ¼ C coshðk3yÞ þ
iq

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

ðk2i � k23Þ

� f½pe1 þ a1ðq2 þ p � k2i Þ��ee�0 � ½a1ap þ ðq2 þ as2 þ pae1 � k2i Þ��hh
�
0g coshðkiyÞ: ð53Þ

Fig. 2. Temperature distribution on the middle plane.
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Substituting Eqs. (51) and (53) into Eq. (29) and integrating the resulting equation, we get

�vv� ¼ �iqC
k3

sinhðk3yÞ þ
1

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

ki
fðk2i � q2 � pÞ�ee�0 þ apÞ�hh�

0g sinhðkiyÞ

þ q2

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

kiðk2i � k23Þ
f½e1ap þ a1ðq2 þ p � k2i Þ��ee�0 þ ½a1ap þ ðq2 þ as2 þ pae1 � k2i Þ��hh

�
0g sinhðkiyÞ:

ð54Þ

The stress components can be obtained by substituting from the above equations into Eqs.
(24)–(27). The above approach gives the solution of the problem in the transformed domain in
terms of three constants C, �ee�0 and �hh�

0 which can be obtained from the boundary conditions of the
articulate problem under consideration.

�rr�
xx ¼

2iqC
a0

coshðk3yÞ �
2q2

a0ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

ðk2i � k23Þ

� f½pe1 þ ðq2 þ p � k2i Þ��ee�0 � ½a1ap þ ðq2 þ as2 þ pae1 � k2i Þ��hh
�
0g coshðkiyÞ

Fig. 3. Horizontal displacement distribution on the surface.
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þ ð3a0 � 2Þ
3a0ðk21 � k22Þ

X2
i¼1

ð�1Þi�1fðk2i � q2 � pÞ�ee�0 þ ap�hh�
0g coshðkiyÞ

� 1

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1fpe1�ee�0 � q2
�

þ as2 þ pae1 � k2i
�
�hh�
0g coshðkiyÞ; ð55Þ

�rr�
yy ¼� 2iqC

a0
coshðk3yÞ �

2q2

a0ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

ðk2i � k23Þ
� f½pe1 þ a1ðq2 þ p � k2i Þ��ee�0 � ½a1ap þ ðq2 þ as2 þ paa1 � k2i Þ��hh

�
0g coshðkiyÞ

þ 1

aðk21 � k22Þ
X2
i¼1

ð�1Þi�1fðk2i � q2 � pÞ�ee�0 þ ap�hh�
0g coshðkiyÞ

� 1

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1fpe1�ee�0 � ðq2 þ as2 þ pae1 � k2i Þ�hh
�
0g coshðkiyÞ; ð56Þ

Fig. 4. Horizontal displacement distribution on the middle plane.
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�rr�
zz ¼

ð2� s�RRÞ
2ðk21 � k22Þ

X2
i¼1

ð�1Þi�1f½ðk2i � q2 � pÞ�ee�0 þ pa�hh
�
0�g coshðkiyÞ

� 1

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1fpe1�ee�0 � ðq2 þ as2 þ pae1 � k2i Þ�hh
�
0g coshðkiyÞ; ð57Þ

�rr�
xy ¼

ðq2 þ k23Þ
a0k3

C sinhðk3yÞ þ
iqð1� q2Þ
a0ðk21 � k22Þ

X2
i¼1

ð�1Þi�1

kiðk2i � k23Þ
� f½pe1 þ a1ðq2 þ p � k2i Þ��ee�0 � ½a1apðq2 þ as2 þ pae1 � k2i Þ��ee�0g sinhðkiyÞ

þ iq
a0ðk21 � k22Þ

X2
i¼1

ð�1Þi�1fðk2i � q2 � pÞ�ee�0 þ ap�hh�
0g sinhðkiyÞ; ð58Þ

where

�ee�0 ¼
P �
0

D
½B11B16 � B13B14�;

�hh�
0 ¼

P �
0 ðq; sÞ

D
½B12B14 � B11B15�;

Fig. 5. Vertical displacement distribution on the surface.
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C ¼ P �
0 ðq; sÞ

D
½B13B15 � B12B16�;

B11 ¼
ðk23 þ q2Þ

k3
sinhðk3LÞ;

B12 ¼
iq

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

kiðk2i � k23Þ

� fðq2 þ k2i Þ½pe1 þ a1ðq2 þ p � k2i Þ sinhðkiLÞ� þ ðk2i � k23Þðk2i � q2 � pÞg sinhðkiLÞ;

B13 ¼
iq

ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

kiðk2i � k23Þ
fðq2 þ k2i Þ½a1apð1þ s0sÞ þ ð1þ msÞðk2i � q2 � as2 � pae1Þ�

þ apð1þ s0sÞðk2i � k23Þg sinhðkiLÞ;

B14 ¼ � 2iq
a0
coshðk3LÞ;

Fig. 6. Stress component rxx distribution on the surface.
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B15 ¼
1

a0ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

� ðk2i
�

� q2 � pÞ þ 2q2

ðk2i � k23Þ
½pe1 þ a1ðq2 þ p � k2i Þ� � a0e1s

�
coshðkiLÞ;

B16 ¼
1

a0ðk21 � k22Þ
X2
i¼1

ð�1Þi�1

� apð1
�

þ s0sÞ �
2q2

ðk2i � k23Þ
½a1apð1þ s0sÞ þ ð1þ msÞðk2i � q2 � as2 � pae1Þ�

� a0ðk2i � q2 � as2 � pae1Þ
�
coshðkiLÞ;

B17 ¼ e1s
X2
i¼1

ð�1Þi�1ki sinhðkiLÞ;

B18 ¼
X2
i¼1

ð�1Þi�1ki½ðk2i � q2 � as2 � pae1Þ� sinhðkiLÞ;

Fig. 7. Stress component rxx distribution on the middle plane.
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D ¼ B11ðB15B18 � B16B17Þ � B14ðB12B18 � B13B17Þ:

This completes the solution of the problem in the transformed domain.

5. Inversion of the transforms

In order to obtain the solution of the problem in the physical domain, we have to invert the
iterated transforms in Eqs. (50), (53) and (54). These expressions can be formally expressed as
function of y and the parameters of the Fourier and Laplace transforms q and s, of the form
�ff �ðq; y; sÞ. First, we invert the Fourier transform using the inversion formula given previously.
This gives the Laplace transform expression �ff ðq; y; sÞ of the function f ðq; y; tÞ as

�ff ðx; y; sÞ;¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
eiqxf ðq; y; sÞdq ¼

ffiffiffi
2

p

r Z 1

0

ffe cos qxþ ifo sin qxgdq; ð59Þ

where fe and fo denote the even and odd parts of the function �ff �ðq; y; sÞ, respectively.

Fig. 8. Stress component ryy distribution on the surface.
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We shall now outline the numerical inversion method used to find the solution in the physical
domain. For fixed values of q, x and y the function inside braces in the last integral can be
considered as a Laplace transform �ggðsÞ of some function gðtÞ. The inversion formula for the
Laplace transforms can be written as

gðtÞ ¼ 1

2pi

Z cþi1

c�i1
est�ggðsÞds;

where c is an arbitrary real number greater than all the real parts of the singularities of �ggðsÞ.
Taking s ¼ cþ iy, the above integral takes the form

gðtÞ ¼ e
ct

2p

Z 1

�1
eity �ggðcþ iyÞdy:

Expanding the function hðtÞ ¼ expð�ctÞgðtÞ in a Fourier series in the interval ½0; 2L�, we obtain
the approximate formula [36]

gðtÞ ¼ g1ðtÞ þ ED;

Fig. 9. Stress component ryy distribution on the middle plane.
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where

g1ðtÞ ¼
1

2
C0 þ

X1
k¼1

Ck for 06 t6 2L ð60Þ

and

Ck ¼
ect

L
Re½eikpt=L�ggðcþ ikp=LÞ�: ð61Þ

ED, the discretization error, can be made arbitrary small [37].
As value of gðtÞ becomes the infinite series in (60) it can be summed up to a finite number N of

terms, the approximate

gNðtÞ ¼
1

2
C0 þ

XN
k¼1

Ck for 06 t6 2L: ð62Þ

Using the above formula to evaluate gðtÞ, we introduce a truncation error ET which must be added
to the discretization error to produce the total approximation error.

Fig. 10. Stress component rxy distribution on the surface.
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Two methods are used to reduce the total error. First, the Korrecktur-method is used to reduce
the discretization error. Next, the e-algorithm is used to reduce the truncation error and hence to
accelerate convergence.
The Korrecktur-method uses the following formula to evaluate the function gðtÞ:

gðtÞ ¼ g1ðtÞ � e�2cLg1ð2Lþ tÞ þ E0
D;

where the discretization error jE0
Dj � jEDj as in [37]. Thus, the approximate value of gðtÞ becomes

gNKðtÞ ¼ gNðtÞ � e�2cLgN 0 ð2Lþ tÞ; ð63Þ

where N 0 is an integer such that N 0 < N .
We shall now describe the e-algorithm, which is used to accelerate the convergence of the series

in (62). Let N be an odd natural number and let Sm ¼
Pm

k¼1 ck be the sequence of partial sums of
(62). We define e-sequence by e0;m ¼ 0, and e1;m ¼ sm and

enþ1;m ¼ en�1;mþ1 þ
1

en;mþ1 � en;m
; n;m ¼ 1; 2; 3; . . . ð64Þ

Fig. 11. Stress component rzz distribution on the surface.
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It can be shown in [38] that the sequence e1;1; e3;1; . . . ; eN ;1 converges to gðtÞ þ ED � 1
2
c0 faster

than the sequence of partial sums sm; m ¼ 1; 2; . . .
The actual procedure used to invert the Laplace transforms consists of using Eq. (63) together

with the e-algorithm. The values of c and L are chosen according the criteria outlined in [37].
The last step in the inversion is to evaluate the integral in (59). This was done using Romberg

integration with adaptive step size. This method uses the results from successive refinements of the
extended trapezoidal rule followed by extrapolation of the results to the limit when the step size
tends to zero. The details can be found in [38].

6. Numerical results

In order to illustrate the above results graphically the source rðx; tÞ was taken in the following
form:

rðx; tÞ ¼ Hðx� jajÞHðtÞ expð�btÞ;

Fig. 12. Stress component rzz distribution on the middle plane.
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where a and b are fixed constants and H denotes Heaviside unit step function. This represents a
localized heat source acting in the region �L6 x6 L starting at t ¼ 0 with a value of unity and
exponentially decaying in time. The double transform of rðx; tÞ is given by

�rr�ðq; sÞ ¼
ffiffiffi
2

p

r
sinðqaÞ½1þ iqpdðqÞ�

qðsþ bÞ ;

where dðqÞ denotes the Dirac delta function.
As a numerical example we have considered polymethyl methacrylate which has wide appli-

cations in industry and medicine.
The numerical constants are taken as

4l
3K

¼ 0:8; A ¼ 0:106; e1 ¼ 0:045; b ¼ 0:005; T0 ¼ 773 K; L ¼ 2; a� ¼ 0:5;

a ¼ 0:59037:

The numerical technique outlined above was used to invert the iterated transforms in Eq. (51)
giving the temperature and Eqs. (53)–(58) giving the displacement components u; v and stress
components rxx; ryy; rzz;rxy on the surface of plane y ¼ L and on the middle plane y ¼ 0. The
results are shown in Figs. 1–12, respectively. In these figures, the solid and dotted lines represent
the solution obtained at two values of time, namely t ¼ 0:01 and t ¼ 0:1, respectively. The graph
shows the four curves predicted by the different theories of thermoelasticity, coupled thermo-
elasticity ðs0 ¼ 0:0; m ¼ 0:0Þ and Green and Lindsay theory ðs0 ¼ 0:02; m ¼ 0:03Þ. We note that
since the displacement component v and rxy is an odd function of y, its value on middle plane is
always zero.
We note that results for the all functions for generalized theory are distinctly different from

those obtained for the coupled theory. This due to the fact that thermal waves in the coupled
theory travel with an infinite speed of propagation as opposed to finite speed in the generalized
case. It is clear that for small values of time the solution is localized in a finite region. This region
grows with increasing time and its edge is the location of the wave front. This region is determined
by the values of time t and relaxation times s0 and m.

7. Concluding remarks

The importance of state space analysis is recognized in fields where the time behavior of
physical process is of interest [28].
The state space approach is more general than the classical Laplace and Fourier transform

techniques. Consequently, state space is applicable to all systems that can be analyzed by integral
transforms in time, and is applicable to many systems for which transform breaks down [36].
Owing to the complicated nature of the governing equations for the generalized thermo-vi-

scoelasticity with one relaxation time, few attempts have been made to solve problems in this
field. These attempts utilized approximate method valid for only a specific range of some pa-
rameters.
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In this work, the method of direct integration was by means of the matrix exponential,
which is a standard approach in modern control theory and developed in detail in many texts
[39,40].
The method used in the present work is applicable to a wide range of problems. It can be

applied to problems, which are described by the linearized Navier–Stokes equations in hydro-
dynamic theory [41].
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