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LONGITUDINAL WAVE PROPAGATION
IN A GENERALIZED THERMOELASTIC

CYLINDER

S. Erbay and E. S. ~uhubi

Department of Applied Mathematics,
Research Institute for Basic Sciences,

TUBITAK, Gebze Research Center
P. O. Box 74, Gebze-Kocaeli, Turkey

In this paper the longitudinal wave propagation in a circular infinite cylinder is
studied. The infinite circular cylinder is assumed to be made of a generalized ther­
moelastic material. The dispersion relation is obtained for the case in which the
temperature is kept constant on the surface of the cylinder. Because of the com­
plexity of the dispersion relation, the numerical solutions are given. For various
values ofparameters appearing in the field equations. some dispersion. attenuation.
and phase velocity diagrams are presented.

INTRODUCTION

Longitudinal wave propagation in an infinite circular cylinder has been studied by
Suhubi [1], using the theory of coupled thennoelasticity. In that paper the dispersion
relations were obtained for two particular cases and the resulting equations were
solved analytically for small radii and weak coupling.

The present paper deals with the longitudinal wave propagation in an infinite
circular cylinder, which is assumed to be made of a generalized thermoelastic ma­
terial. The theory of generalized therrnoelasticity, in which the entropy flux and the
entropy source are determined by constitutive relations, allows us to include the
temperature rates among the constitutive variables. It thus permits a finite velocity
of propagation of thermoelastic disturbances. In this context the theory of generalized
thermoelasticity was first proposed by Muller [2]. A simpler version was introduced
by Green and Laws [3], Green and Lindsay [4], and independently by Suhubi [5].
The last form of the theory will be employed in this paper.

We suppose that the lateral surface of the cylinder is free from stresses and is
held at a constant ambient temperature. The frequency equation corresponding to
this case is obtained quite easily. Because of the difficulty of solving this equation
analytically, a numerical solution is given. Since there is an odd number of time
derivatives in the field equations, the frequency equation f(!l,k) = 0, where !l and
k are nondirnensional frequency and wave number, usually has complex roots, imag-
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280 S. ERBAY AND E. S. $UHUBI

inary parts of which measure the decay of waves due to thermoelastic interactions.
Graphs of (Re n,k), (1m n,k), and (clco,k) are plotted for various values of the
material parameters. Here c is the phase velocity, and Co = (EIPo)1/2, where E is
the Young modulus and Po is the density of the medium, is a reference velocity. Our
results are similar to those given by Davies [6] for the purely elastic case.

FIELD EQUATIONS

In the absence of body forces the basic equations for temperature rate-dependent
linear, isotropic thermoelastic medium can be written as follows (5]:

(A + 2j.L) VV . U - j.L V x V x U - f3 V(r + vi) = Pou (la)
~ 2 '" .

POC"K 'V r = PoTT + PocvT + f3To V • u (I b)

where u is the displacement vector, T is the temperature change about an equilibrium
temperature To, A and j.L are Lame's constants, Po is the density of the medium, K

is the diffusivity, c, is the specific heat per unit mass at constant strain (K = POCvK
is the coefficient of thermal conductivity), f3 is a coupling factor that couples the
heat conduction and elastic field equations, and v and l' are constants introduced by
the theory of generalized thermoelasticity.

If we now make use of the Helmholtz resolution for the displacement vector u
as

u = V<p + V x \lJ

the field equations (Ia) and (Ib) become

V'\lJ=O (2)

(A + 2j.L) V'2<p - [3(T + vi) = Poq>

j.L V'2\lJ = Po'"

PoCvK 'V 2T = PoTT + Poci + I3To V'2<p

(3a)

(3b)

(3c)

It is clearly seen that the rotational part of u is decoupled from the other parts. Using
Eqs. (3a) and (3c), it is found that <p satisfies the following equation:

. (1' a2 a) f),
2-r2" 22 t-' 0 2 · ..- - + - - K V' (<p - c. 'V <p) - -2- V' (<p + v<p) = 0

cvarl at Poc"
(4)

If a similar operation is carried out for the temperature T, it can be seen that the
same equation is satisfied by T:

(

T a2 a 2)" 2 2 [32To 2' ..- - + - - K V' (T - c. V' T) - -2- V' (T + vT) = 0
c, at at paC"

(5)
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GENERALIZED THERMOELASTICITY 281

Here ci = (X, + 2J.L)/Po is the irrotational velocity.
Since we are dealing with the longitudinal oscillations of a circular cylinder, the

displacement vector becomes u = (unO,u z) in cylindrical polar coordinates (r,e,z)
and u., U" and T are functions of only r, z, and t. Taking this into account, Eqs.
(4) and (5) take the following form for <p and T in cylindrical polar coordinates:

(6)

LONGITUDINAL WAVES IN AN INFINITE CIRCULAR
CYLINDER

Since we are investigating longitudinal wave propagation in a circular infinite cyl­
inder, we assume that all field quantities are harmonic functions of Z and t:

T = OCr) ei(qz+wtl

<p = <I>(r) ei(qz+wl)

'fI = 'It(r) ei(qz+wl)

(7a)

(7b)

(7c)

Putting Eqs. (7a)-(7c) into Eq. (6) and using the following dimensionless quantities:

r z
p=- ~=-

a a

where a is the radius of the cylinder, we obtain the following equation for 0 and
<1>:

(
d2 1 d ) ( d

2
1 d )- + - - + x'i - + - - + x,~ {O,<I>} = 0

d p2 P dp d p2 P dp

where x'i and x,~ are the solutions of the following algebraic equation:

(8)

X, 4 - (02 - iaO - i£10 + £1£302 - 2,;)x,2 - ';(02 - iaO - i£IO + E]E30 2)

- (ia03
- E20

4) + e = 0 (9)

The dimensionless quantities appearing in Eq. (9) are defined in the following man­
ner:

qa = k
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282 S. ERBAY AND E. S. ~UHUBI

(10)

Since the parameter £1 defined in Eq. (10) couples the equations corresponding to
the elastic wave propagation and the heat conduction, it can be called the coupling
factor. The coefficient £2, which is introduced by the theory of generalized ther­
moelasticity, may render the governing system of equations hyperbolic. The param­
eter £3 is the coefficient of the term indicating the difference between empirical and
thermodynamic temperatures.

The solution of Eq. (8) for <1>, which is finite for p = 0, is

where Jo( ) is a Bessel function of the first kind of order zero. We can thus write

(11)

By changing arbitrary coefficients, the same solution can be written for T:

(12)

Of course, the coefficients in Eqs. (11) and (12) are not entirely independent of each
other, because of Eqs. (3a) and (3c). Using Eq, (3a), the relations between those
coefficients can be written in the following form:

0 2
- fil- 'A2 p c2

c= I~A
1 + iOE3 l3a2

0 2
- fil- 'A2 p c2

D= 2~8
1 + iOE3 l3a2

Then 'P and T become

P c2

T = 2 0 I. [A(02 - fil - 'At)JO('A1P)
l3a (1 + lE30 )

+ 8(02
- k! - 'A~)JO(A2P» ei(qz+WI)

(l3a)

(13b)

(l4a)

(14b)

The solution for the vector potential -lJ can be sought as follows (Eringen and Suhubi
[7]):

ax-lJ ::: ljJe, - I - eear
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GENERALIZED THERMOELASTICITY 283

where IjI and X are scalar functions and l is a scale parameter used to make both
terms of the same dimension. Because of the nature of the problem, IjI is equal to
zero. If 1 is chosen as a, the solution is

where X satisfies the scalar wave equation

(15)

where c~ = !J./Po is the velocity of shear waves. We look for a solution to Eq. (15)
as follows:

X = x(p) ei(q:+bl')

Then the solution can be written

where A~ = 'Y2112 - k', 'Y = CI/C2' and C is an arbitrary constant. Thus the vector
potential IjI is found as

(16)

After calculating the curl of tfI and the gradient of 'P, we can write the components
of u in the following form:

(17a)

(17b)

In cylindrical polar coordinates the nonvanishing stress components of temperature
rate-dependent thermoelastic material in the absence of the variable 6 are given by

au, .
t.: = AV • u + 2!J. ar - I3T - vl3T

(
au, au:)

t,. = ~ - +-
iJz ar

(18a)

(18b)

If we calculate related quantities and put them in Eqs. (18a) and (18b) we get the
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stress' components as

S. ERBAY AND E. S. SUHUBI

{ [
A 2',~ B 2 ]

i r , = A - a2 (AI + f( )Jo(A1P) - a2 (A2 + k?)JO(A2P)

\ [ A 2( 1 ) B 2(+ 2fJ.. -"2 AI JO(AIP) - - JJ(A.p) -"2 A2 J O(A2P)
a AlP a

- _1 J.(>\2P») _ ik ~ A;(JO(A3P) __1J I(A 3P»)]
A~ a ~P

- pOC{~(02 - k'- - Ai)Jo(A,P) + ~ (.02 - k'- - Ai)JO(A2P)]} ei(qz+wl)

i; = fJ..[-2ikA 1 A2J.(A.p) - 2ikA2 B2J 1(A2P) - ~ A3(Ai - k'-)JI(A3P)] ei(qz+w,)
a a a

DISPERSION RELATION

If the lateral surface of the cylinder is held at constant temperature, the boundary
conditions that must be satisfied by stress components and temperature are

In = 0 T=:O for P = 1 (or r = a)

Utilizing these conditions, we get three homogeneous linear equations in A, B, C.
In order to have a nontrivial solution to these equations, the determinant of the coef­
ficient matrix must be equal to zero. This condition gives us the following relation:

(n2 - k? - Ai)Jo(A1) { [An2J
o(>\2) + 2fJ..(n2 - k'-)JO(A2)

- 2fJ..A2J.(A2)]AlA; - k?)J 1(A3) + [JO(A3) - :/I(A3) ]4fJ..k'-A2AiJI(}\2)}

- (02 - k'- - A~)JO(>\2){ [An2J
o(>' .) + 2fJ..(n2 - k?)JO(A.) - 2fJ..AIJ1(AI)]

. A3(A; - k'-)J I (A3) + [JO(A3) - :3 J I(A3) ]4fJ..k'-AIA;J1(AI)} =: 0 (19)

Here nand k are dimensionless complex frequency and real wave number, respec­
tively, Ai and Ai are the roots of Eq. (9), and Ai =: ·l.o2 - k? This equation is the
dispersion relation for the particular problem whose boundary conditions are given
above. As it is not possible to obtain the roots of this equation analytically, we will
give its numerical solutions. However, some analytical results can be obtained by
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GENERALIZED THERMOELASTICITY 285

assuming that the radius of cylinder is small. Then the Bessel functions can be ex­
panded in power series in the radius Q. Since the field equations are ncndimension­
alized, the quantity Q is not seen explicitly in them. But if we remember the defi­
nitions of the dimensionless quantities we can see that smallness of the radius a
corresponds to smallness of the dimensionless wave number k. Arranging the dis­
persion relation, we obtain the following form:

For small k, considering

c
n=-k

Cl

and expanding the Bessel functions, we obtain the following expression:

(21)

where "(2 = cUc~ and C is the phase velocity. For k = 0 it is found that the phase
velocity C is equal to Co regardless of the values of the parameters elo E2' E3.

NUMERICAL SOLUTION

Because of the nature of the problem, we expect the roots of the dispersion equation
to be complex. Using a complex root finding program, a few modes are calculated
for the real dimensionless wave number k. Taking the real parts of the n's, we find
the dimensionless phase velocity as

C CI
- = - ReD.
Co cok

Since pure thermal waves are detected in the some metals cooled down to 4.2
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28& S. ERBAY AND E. S. ~UHUBI

K, we made our calculations about this temperature. The material properties for
copper at room temperature are as follows:

Po = 8.96 X 10- 3 kg/em"

A. = 7.55 x 108 kg/ern . S2

~ = 3.86 X 108 kg/ern . S2

K = 3.98 X 104 kg' cm/K . S3

c; = 3.845 X 106 cm2/ K • S2

where Po is the density, A. and ~ are Lame constants, K is the thermal conductivity,
and c, is the specific heat. Considering that a 1 K decrease in temperature increases
the elastic moduli of the material by about 0.03% [8], the Lame constants and other
quantities at 4.2 K are taken approximately as'

A. = 8.20 x 108 kg/ern . S2

~ = 4.20 X 108 kg/ern . S2

K = 113 X 104 kg . cm/K . S3

c; = 9.1 x 102 cm2/K' S2

To calculate the coupling factor £, it is necessary to know the value of the thermal
expansion coefficient a at 4.2 K, because J3 = (3A + 2~)a. At temperatures less
than 9D/50, where 8D is the Debye temperature for the material, the thermal expan­
sion coefficient is taken as approximately 10-8 K- 1 for copper [9]. The Debye tem­
perature for copper is 339 K. From these values 6 1 is found to be 2.6 x 10- 7 at low
temperatures. In fact, 61 is a small parameter. There are no experimental values for
£2 and £3' A thermodynamic inequality from the generalized thermoelasticity theory
indicates how the values for £2 and £) can be selected [5]. According to this ther­
modynamic inequality, the following expression must be positive:

If we multiply this inequality with appropriate terms the dimensionless form can be
written as

(22)

The dimensionless parameter ex is definted in Eq. (10).

'While II. and J.L are calculated approximately by extrapolation, K and c. are obtained from mea­
surements.

D
ow

nl
oa

de
d 

by
 [

L
M

U
 M

ue
nc

he
n]

 a
t 0

4:
37

 0
9 

M
ar

ch
 2

01
3 



GENERALIZED THERMOELASTIClTY 287

Let us first consider the case in which £} = 2.6 X 10- 7
, £2 = £3 = 1, and a =

2.* Because the coupling factor £1 is a small quantity, it can be assumed that the
coupling between elastic and thermal field equations can be neglected. This is shown
in the dispersion equation. As a result we may expect that some modes related to
the elastic behavior ofthe material are real, and others related to the thermal behavior
of the material are complex. Indeed, some of the modes are real and others are
complex. An interesting point about the complex roots is that their imaginary parts
are constants. For this special case they are equal to 1. Real parts of 0 as a function
of k are presented in Fig. I, where thin solid lines show the real roots and thick
solid lines show the complex roots. Although the modes seem to intersect each other,
in reality they do not. Only projections on the plane (k,Re. 0) intersect. This situation
can be seen in Fig. 2, the three-dimensional form of Fig. 1. Phase velocities for five
modes are depicted in Fig. 3.

As a second case we take coupling factor £} = 2.6 X 10-7
, £2 = £3 = I, and

a = 4. Because £} is a small parameter, the same things can be said in this case as
in the preceding case. When the modes are calculated, it is seen that some of them
are real and others complex. However, in this case the imaginary parts of the com­
plex roots are equal to 2 (this is explained below). Real parts of n versus k are
presented in Fig. 4. As in the preceding case, thin solid lines are related to real roots
and thick solid lines to complex roots. Although they seem to intersect, Fig. 5, which
is the three-dimensional representation of Fig. 4, shows that this is not the case.
Phase velocities as a function of k are presented in Fig. 6.

'r__ 1-' -'- ......

4 &
k (Wave number)

o

2.5 .-

:s
III

a::

Fig. 1 Real part of n for five modes of the cylinder versus dimen­
sionless wave number k, Il = 2, E, = 2.6 X 10-1

, E, = E, = 1.

'Henceforth, in numerical calculations E" E" and a will be chosen arbitrarily, complying only with
the constraint of Eq. (22), since to our knowledge no experimental values are available in the literature.
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288 S. ERBA Y AND E. S. SUHUBI

Assuming that the coupling factor 1'1 is a small quantity, if we expand the dis­
persion relation in power series in 1'1 we obtain the following equation:

-(02 - 1'202 + iaO)Jo[(E202 - ian - .0)1/2]{(Ai - ~)2Jo[(!1.z - e)I/2]JI(A3)

- 2(02 - e)I/2(Ai + k2)J 1[(0 2 - ~)1/2]JI(A3)

+ 4~(02 - ~)1/2A3JI[(02 - e)I/2]JoOI.3)} + 0(1'1) = 0 (23)

Because of the smallness of E." the dispersion equation becomes decoupled. The first
two terms in Eq. (23) characterize thermal effects; the third term is the dispersion
relation that corresponds to the elastic effect. This is why some roots are real and
others complex. To understand why the imaginary parts of the complex roots are
constant, let us look at the second expression in Eq. (23):

Because all the roots of Jo( ) become real for a given k and selected values of 1'2
and 0., if we assume that 0 is a complex quantity, the imaginary part of the argument
of Jo must be equal to zero. This gives the following condition regardless of the
values of the dimensionless wave number k:

a
1m 0 =­

2£2

which shows that the imaginary parts of the complex roots are constant. It is easy
to see that if the material is chosen as a classical thermoelastic one, the parameter

1.5

58
Ql
a:

~'., I',
+ '"" "~ . ,

\ ~""''''' I',
/..(9 :', I

"),.' I 'Iv...... < I 'I
')66'~ '"

C!>",,) I ' I
--.L..__....:'J"--__--'L.__----'"

, 0.5 1
Im(n.)

Fig. 2 Three-dimensional form of Fig. 1.
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GENERALIZED THERMOELASTICITY 289

2 •
k (Wave number)

L- -'---- --'-- ----'- ._.--l

D. i I

\.r-----~

Fig. 3 Phase velocities versus k, a = 2, £, = 2.6 X 10-', £, = £)

= I.

10

7.5

s:
OJ
0::

~ J . • --'- '- .L..-

4 i
k (Wave number)

Fig. 4 Real part of n versus k, a = 4, £, = 2.6 X 10-', £, = £J =
1.
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1.51
1m In)

0.5

~
I I

~ .-{
--.--.----1,. ~

"-,
-,

"""-,

"",
""-,

-,

", I
" I
~

2

I
I
I
I
I

"'L__... ,,

290

8 r
s: 6 -
III ia:.

4 ~

Fig. S Three-dimensional form of Fig. 4.

4

"'0
Co)-.£
~ J
'u
0
'ii
>

51
~
a..

4 6
k (Wave number)

L- ----"__------'--- ---.L____:.-..I-

D 8

Fig. 6 Phase velocities versus k, ex = 4. E, = 2.6 x 10-\ EJ = E)

= I.

D
ow

nl
oa

de
d 

by
 [

L
M

U
 M

ue
nc

he
n]

 a
t 0

4:
37

 0
9 

M
ar

ch
 2

01
3 



GENERALIZED THERMOELASTICITY 291

E2 is equal to zero. Then the roots 0 of 10[(-io.O - e)I/2] become purely imaginary
for all k.

As a third case, although it may seem not to agree with the physical facts, we
take E. = 1, E2 = E3 = 1, and 0. = 2. Since £1 is taken as a large parameter, coupling
between the elastic and thermal field equations is important and it can affect the
characteristics of modes. Indeed, looking at the numerical results we can see that
there are no real roots and the imaginary parts of the frequencies begin to rise; that
is, dissipation becomes prominent. Real and imaginary parts of 0 versus k are shown
in Figs. 7 and 8. However, elastic-like modes can be differentiated from thermal­
like modes. In elastic-like modes dissipation is smaller, and in thermal-like modes
attenuation is larger. This can be seen in Fig. 8, where thin solid lines show elastic­
like modes and thick solid lines show thermal-like modes. Dissipation in the elastic­
like modes is smaller than in the thermal ones: A three-dimensional representation
of this case is presented in Fig. 9, where dashed lines show the projections of modes
on the plane (k,Im 0). Related phase velocity diagrams are presented in Fig. 10.

Finally, we take £1 = 2, £2 = £3 = 2, and 0. = 4. As in the' preceding case,
dissipation effects begin to appear. In all modes dissipation is observable. However,
elastic-like and thermal-like modes can be separated from each other because of the
difference in their imaginary parts. Real and imaginary parts of 0 are depicted in
Figs. 11 and 12, respectively. A three-dimensional representation of this case is
shown in Fig. 13. Dashed lines in Fig. 13 show the projections of modes on the
plane (k,Im 0). Related phase velocity diagrams are shown in Fig. 14.

We can deduce from the above analysis that if the coupling parameter £. is
chosen as a small quantity the dispersion equation leads to two uncoupled modes.
One of them is real and related to the elastic behavior, whereas the other is complex
and represents the thermal behavior. If, contrary to the physical facts, we assume
that the coupling factor E. is a large parameter, dissipation appears in all modes.
Because of the increased value of £ 1, real roots disappear and all modes become
complex. But in some modes dissipation is smaller than in others, which means that
although there is dissipation in all modes, elastic behavior dominates in some modes
and thermal behavior in others.

CONCLUSIONS

Longitudinal wave propagation in an infinite, temperature rate-dependent thermo­
elastic cylinder has been studied, and tIie dispersion relation is obtained for a par­
ticular set of boundary conditions. Because of the difficulty of finding an analytical
solution to the dispersion equation, a numerical solution is given within a certain
interval of the real wave number. For various values of the parameters £1> E2, £3, a
few numbers of modes have been obtained. The variations of frequencies and phase
velocities with dimensionless wave number k have been presented.
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~
Q)

a: 2.5 L-~---

4
k (Wave number)

8

Fig. 7 Real parts of n versus k, II = 2, £, = £2 = £~ = 1.

1.5

1-

~
E- O.5r-- _

4
k (Wave number)

Fig. 8 Imaginary parts of n versus k, II = 2, £[ = E2 = E} = 1.
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