International
Journal of
Engineering
Science

PERGAMON International Journal of Engineering Science 40 (2002) 13291347

www.elsevier.com/locate/ijengsci

Generalized thermo-viscoelastic plane waves with
two relaxation times

Mohamed I.A. Othman, Magdy A. Ezzat *, Sayed A. Zaki,
Ahmed S. El-Karamany

Department of Mathematics, Faculty of Education, Salalah-211, P.O. Box 2801, Sultanate of Oman
Received 16 October 2001; accepted 19 December 2001

(Communicated by E.S. SUHUBI)

Abstract

The model of the two-dimensional generalized thermo-viscoelasticity with two relaxation times (Green
and Lindsay theory) is established. The normal mode analysis is used to obtain the exact expressions for the
temperature distribution, thermal stresses and the displacement components. The resulting formulation is
applied to three different concrete problems. The first deals with a thick plate subjected to a time-dependent
heat source on each face. The second concerns to the case of a heated punch moving across the surface of a
semi-infinite thermo-viscoelastic half-space subjected to appropriate boundary conditions and the third
problem deals with a plate with thermo-isolated surfaces subjected to a time-dependent compression.
Numerical results are given and illustrated for each problem. Comparisons are made with the results
predicted by the coupled theory. © 2002 Published by Elsevier Science Ltd.

1. Introduction

Since the work of Maxwell, Boltzmann, Voigt, Kelvin and others, the linear viscoelasticity
remains an important area of research. Gross [1], Staverman and Schwarzl [2], Alfery and Gurnee
[3] and Ferry [4] investigated the mechanical-model representation of linear viscoelastic behavior
results. Solution of boundary value problems for linear viscoelastic materials including temper-
ature variations in both quasistatic and dynamic problems made great strides in the last decades,
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Nomenclature

A, u Lame’s constants

K A+

0 density

Ck specific heat at constant strain

t time

T absolute temperature

Ty reference temperature chosen so that |7 — 7| < 1
u; components of displacement vector
&j components of strain tensor

e e the dilatation

oy components of stress deviator

e components of strain deviator

k thermal conductivity

To,v  two relaxation times

o coefficient of linear thermal expansion
Y 3K o,

g 7/(pCk)

Mo (pCe)/k

a  K/p

&1 508

Ty (dopcg) /7 = do/30r

oo non-dimensional number

o*, B, A empirical constants

in the works of Biot [5,6], Morland and Lee [7], Tanner [8] and Huilgol and Phan-Thien [9]. Bland
[10] linked the solution of linear-viscoelasticity problems to corresponding linear elastic solutions.
Notable works in this field were the works of Gurtin and Sternberg [11], Sternberg [12] and
Ilioushin [13] offered an approximation method for the linear thermal viscoelastic problems. One
can refer to the book of Ilioushin and Pobedria [14] for a formulation of the mathematical theory
of thermal viscoelasticity and the solutions of some boundary value problems, as well as, to the
work of Pobedria [15] for the coupled problems in continuum mechanics. Results of important
experiments determining the mechanical properties of viscoelastic materials were involved in the
book of Koltunov [16].

Two generalizations to the coupled theory are introduced. The first is due to Lord and Shulman
[17] who obtained a wave-type heat equation by postulating a new law of heat conduction to
replace the classical Fourier’s law. This new law contains the heat flux vector as well as its time
derivative. It contains also a new constant that acts as a relaxation time. Since the heat equation
of this theory is of the wave-type, it automatically ensures finite speeds of propagation for heat
and elastic waves. The remaining governing equations for this theory, namely, the equations of
motions and constitutive relations remain the same as those for the coupled and the uncoupled
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theories. This theory was extended by Dhaliwal and Sherief [18] to general anisotropic media in
the presence of heat sources. Recently, Sherief and Ezzat [19] have obtained the fundamental
solution for this theory valid for all times.

The second generalization to the coupled theory of the thermoelasticity is what known as the
theory of thermoelasticity with two relaxation times or the theory of temperature-rate-dependent
thermoelasticity. Miiller [20] in a review of thermodynamic of thermoelastic solids has proposed
an entropy production inequality, with the help of which, he considered restrictions on a class of
constitutive equations.

A generalization of this inequality was proposed by Green and Laws [21]. Green and Lindsay
have obtained an explicit version of the constitutive equations in [22]. These equations were also
obtained independently by Suhubi [23]. This theory contains two constants that act as relaxation
times and modifies all the equations of the coupled theory not the heat equation only. The
classical Fourier’s law of heat conduction is not violated if the medium under consideration has a
center of symmetry. Erbay and Suhubi [24] studied wave propagation in finite cylinders. Ignaczak
[25] studied a strong discontinuity wave and obtained a decomposition theorem for this theory
[26]. Ezzat [27] has also obtained the fundamental solution for cylindrical regions. Ezzat and
Othman [28] have established the model of two-dimensional equations of generalized magneto-
thermoelasticity with two relaxation times in a perfectly conducting medium.

In the present paper we shall formulate the normal mode analysis developed in [28,29] to two-
dimensional of thermo-viscoelasticity with two relaxation times. The resulting formulation is
applied to three concrete problems. The exact expressions for temperature distribution, thermal
stresses, and displacement components are obtained for each problem.

2. Formulation of the problem

We assume that there are no external forces or heat sources acting on a viscoelastic solid region.
The solid is assumed to obey the equations of generalized thermo-viscoelasticity with two re-
laxation times, which consists of:

The equation of motion
Gijj = Piki. (1)
The generalized heat conduction equation

2

0 0 .
kT,—i:pCE<a+‘C0@>T+’})TQe. (2)

The constitutive equation [15,30]

T

S, — /0 R(t— fo)wch — R(ey) 3)
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with the assumptions

a ij 77t — a ij 77t
0,(X,1) = U"a(: )_ 0, &x1)= gjéf ) _ 0, —oco<t<O0, (4)
where
(e} e
Sij = 0y — %@_/7 e = & — géip e=¢éy, 0;=0; X=(X,)2),

and R(z) is the relaxation function which can be taken [16,31] in the form

R(t) =2pu [1 — A /0, e P! dt], (5)

where 0 < a* <1, 4>0, f>0.
Assuming that the relaxation effects of the volume properties of the material are ignored, one
can write for the generalized theory of thermo-viscoelasticity with two relaxation times

0 = Kle — 3a7(T — Ty +vT)], (6)

where ¢ = g;;/3.
Substituting Eq. (6) into Eq. (3), we obtain

Gij = 1%(81]' — géi]) +Keéij — ’))(T — T() + VT)(SU. (7)

From Egs. (1) and (7), it follows that

L1 1 .
pui = R(EVzui —0—6671) + Ke; — V(T — Ty + VT)J». (8)

We shall consider only the simplest case of the two-dimensional problem. We assume that all
causes producing the wave propagation are independent of the variable z and that waves are
propagated only in the xy-plane. Thus all quantities were appearing in Egs. (1)—(8) are inde-
pendent of the variable z. Then the displacement vector has components (u(x,y,?),v(x,y,?),0)
(plane strain problem).

Let us introduce the following non-dimensional variables:

X =congx, ¥ =congy, u =conou, v =congu, t=cint, Th=coloTo,
2 2T —T) 2 Oij
v = cgngy, OZTC%, R’:ﬁR7 G;/‘:f/'
In terms of these non-dimensional variables, Eqgs. (2), (7) and (8), taking the following form
(dropping the dashes for convenience):
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k- (T2, o)
w05 (5 ) o
v? :<§t+m§;>0+850§;, (11)
axx:ﬁ<%—%2—z>+e—<9+v%), (12)
awzﬁ(g—;}—%%>+e—<0+v%>7 (13)
0, = —%Ié(e) +e— <9+v%€>, (14)
axy:%k<2—§+%>, (15)
where

Pu 30%u 1 %

—— 4ty 16
d) ax2+4 6y2+4 axﬁy’ ( )
v 30w 1 u
= 17
4 6)/24_46952—’_46966)/7 (17)
Ou v
=—+—. 18
e o + o (18)
3. Normal mode analysis
Eqgs. (9)-(18) are simplified by decomposing the solution in terms of modes so that
[,v,0,,¥,e,&,0,](x,y,8) = [, 0", 07, ", Y, &", ], 07 ] () exp(wt + iax). (19)

It can be proved that

R(f(x,y,1)) = /OZR(I —1) W dr = oR(w)f*(y) exp(wt + iax) (20)
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for any function f(x,y,?) of class C'V, which satisfies the conditions

£y, 1) ‘W‘O (—o0 <t <0),
where
R(w) = / " e R dr, (21
0

and w is the (complex) time constant and “a” is the wave number in the x-direction. This makes it
possible to get

(D"~ )& (3) + wR(D* — ))e’ () = e (7). 22)
where
45* — e* _ 0)29*, (23)
1
* = WR +1° (24>

Eq. (11) simplifies to

1 «
P (y) = —[D? =& — o1 — 10 w]0(v), (25)
&1
where D = d/dy.
Eliminating ®@*(y) between Eqs. (22) and (25) and using (23), we get

(D* —a\D* + a5) 0" (y) = 0, (26)
where

a, = oy + 2a° + o’ + ag 0w, (27)

ay = (@ + aw?)(a® + o) + awe wma’. (28)

Eq. (26) can be factorized as
(D>~ B)(D ~ )0' () = 0, (29)
where

ki, = (@ + w3) £ s, (30)
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1
o) = o(l +1y0), o, =(1+ o), w3:§[col+ocw2+ocslww2}, wy =\/a? —4a,.

The solution of Eq. (29) is taken as
0" (y) = A, cosh(kyy) + A, cosh(kyy) + Az sinh(kyy) + Ay sinh(kyy),

C 9

where A41,4,,A3 and A, are some parameters depending on “a” and “w”.
Substituting Eq. (32) into Eq. (25), we obtain

2 2
ki —a” — o — gow,

&1

0= |

N [k% —a* — w — 0w,

] [4, cosh(k;y) + A3 sinh(ky)]

} [4; cosh(kyy) + A4 sinh(kyy)].
&1

Substituting Egs. (32) and (33) into Eq. (23), one obtains

2 2
e (y) = (W) (4, cosh(kry) + A4 sinh (k)]
1

B—d - .
+ <#> [4; cosh(kayy) + Aa sinh(kyy)].

Introducing the function

ov Ou
Q-4 ™
ox oy’

we obtain from Egs. (9) and (10) after some manipulations:
(D — a® — y*)Q" =0,
then

Q*(y) = By sinh(my) + B, cosh(my),

where
4w
2 2 2
m =a 4+ opyw oy = —=.
’ 3R
Since,

Q" =iav* — Du*, " =iau" + Dv".

(35)

(36)
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From Egs. (34), (36) and (38), we obtain

ia ki —a* — ) 2 —a — o
) = — <[ 2= )[4 h A sinh 2 - -
“0) w{( (kf — @) >[ coshifuy) o Assin (k‘y”*( (k5 — a?) )

m

X [Ay cosh(kyy) + A4 sinh(kzy)]} — [B) cosh(my) + B, sinh(my)]

o>
and

kz(k% — Clz — 601)
(& =)

1 2 _ 42 .
{ kl (kl a 601) [Al Slnh(kly) + A3 COSh(kly)] +

(kt — a?)

1a

X [A> sinh(kyy) + Aa cosh(kzy)}} + [B; sinh(my) + B, cosh(my)],

o>
e 9

where B, and B, are some parameters depending on “¢” and “w”.
Egs. (12)—(15), in the normal mode form, are

(. 1
o', = wR <1au* - §Dv*> + e — w0,

*
ny

_ 1
wR (Dv* - 5iau*> + e — w0,

oR(Du* + iav*),

A~ w

* j—
ny =

o :
o, = (1 —EwR)e* — w07,

Substituting Eqs. (32), (34), (39) and (40) into Egs. (41)-(44), we get

1 . .
o (v) = AholDE] {B,[41 cosh(kiy) + A3 sinh(kiy)] + B,[4> cosh(kay) + Ag sinh(kyy)]}
2i .
— IZL’Z [By cosh(my) + B, sinh(my)],
o)
1 . .
0, () = p— {B;[4; cosh(kyy) + A3 sinh(kyy)] + f4[4, cosh(kyy) + A4 sinh(kyy)|}
9
— 2B, cosh(my) + By sinh(my)],
o)
2i ) .
i, (y) = . aj; {b1[A; sinh(kyy) + A5 cosh(kiy)] + by[A4, sinh(kyy) + A4 cosh(ky)]}
(m* + a%)

— ~——5——[Bi sinh(my) + B, cosh(my)],
e

(40)

(41)

(42)

(43)

(44)
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1

a(y) = o {b3]4; cosh(kyy) + A3 sinh(k,y)] + by[4, cosh(kyy) + Ay sinh(k,yy)]}, (48)
where
B —a—ow
B, = W oo (k7 — a*) — 2ak?] — g ey, (49)
k—a*—ow
B, = W [oo(k5 — a*) — 20ik3] — gy ey, (50)
p
B —a— o
Bs = W oo (ki — @) + 20a®] — asgwrwey, (51)
I
B —ad—w
By = W oo (K2 — a?) + 20a*] — apmrmey, (52)
2
(k} —a* — )
by =kl >3
U RS 7
(k2 — az — a)l)
by =k, w, (54)
by = (a9 — 20) (ki — @ — ) — aywrwey, (55)
by = (09 — 20) (k3 — @* — 1) — oty WE; . (56)

The normal mode analysis is, in fact, to look for the solution in Fourier transformed domain.
Assuming that all the relations (temperature, etc.) are sufficiently smooth on the real line such that
the normal mode analysis of these functions exist.

4. Applications
Problem I. A plate subjected to time-dependent heat sources on both sides [28].

We shall consider a homogeneous isotropic thermo-viscoelastic infinite thick flat plate of a
finite thickness 2L occupying the region G given by G = {(x,y)| — oo <x < 00, —L <y <L,
—00 < z < oo} with the middle surface of the plate coinciding with the plane y = 0.

The boundary conditions of the problem are taken as:

(1) The normal and tangential stress components are zero on both surfaces of the plate; thus,
o, =0 ony==L, (57)

o,=0 ony==L (58)
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(i1) The thermal boundary condition
Gn + ho0 = r(x,t) ony==+L, (59)

where ¢, denotes the normal component of the heat flux vector, Ay is Biot’s number and r(x, ¢)
represents the intensity of the applied heat sources.
Due to symmetry with respect to y-axis we can put 43 = 4, = 0 and B, = 0 in Eqgs. (32)-(48).
Eq. (47) together with Eq. (57) gives
2i ) : 24+ d?
@ [41by sinh(k L) + A,b; sinh(kyL)] — M

2
o€ o,

By sinh(mL) = 0. (60)

Eq. (46) together with Eq. (58) gives

2ia
o {[4; cosh(k;L) + A4, cosh(k;L)]} — WBI cosh(mL) = 0. (61)

We now make use of the generalized Fourier’s law of heat conduction in the non-dimensional
form, [17] namely,

dg, 90

gn + 7o ot :_&a (62)

by using the normal mode we get

1 o0

qn:_1+fow§' (63>

Using Egs. (59) and (63), we arrive at

o (a,w) = w1hy0"(y) — DO (y) ony=+L. (64)
Using Egs. (32) and (64), one obtains

Ay [w1hocosh(kiL) — wk sinh(kL)] + Az [ hg cosh(kyL) — wk, sinh(k,L)] = w7 (a, w).  (65)
Egs. (60), (61) and (65) can be solved for the three unknowns A4, 4, and By,

. wiayr(a,w)

A, = X , (66)

a)lalzr* (a, (1))

A2:_ A )

(67)

2i060(1)a)16115}"*(a, (D)
B 68
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where
a;; = (m* + a*) sinh(mL) cosh(kyL) + 4aub, cosh(mL) sinh(k,L), (69)
a;y = (m* + a*) sinh(mL) cosh(k L) + 4aub; cosh(mL) sinh(k;L), (70)
a3 = wyhg cosh(kiL) — wk sinh(k(L), (71)
ajq = wyhycosh(k,L) — wk; sinh(k,L), (72)
ays = by sinh(kL) cosh(k,L) — b, cosh (kL) sinh(k,L), (73)
A = ay1a13 — apais. (74)

Problem II. A time-dependent heat punch across the surface of semi-infinite thermo-viscoelastic
half-space [29].

We will consider a homogeneous isotropic thermo-viscoelastic solid occupying the region
G={(xz2)]y<0, —00 <x < oo, —00 <z<oo}. In the physical problem, we shall suppress
the positive exponential, which are unbounded at infinitely. Thus we should replace each sinh(ky)

by [—1exp(ky)] and each cosh(ky) by [Lexp(ky)].
Then, Egs. (32), (33), (39), (40) and (45)—(48) can be written as

0" (v) = 4] exp(kiy) + 45 exp(kay), (75)
* 1 * *
D*(y) = oo (147 exp(kiy) + 0245 exp(kay)], (76)
where
o :klz—az—wl —gww, and oczzkg—az—col — s W, (77)
* la (klz_az_wl) * (kg_az_wl) * m *
u'(y) = w6l { W/‘h exp(kiy) + WAZ exp(kay) ¢ — WBl exp(my),
(78)
« —1 kl(kf—az—a)l) " kz(kg—az—wl) " i(l "
v (y) = 60—81{ (k% — az) Al exp(kly) + (kg — az) A2 exp(ka) - 060(1)2 Bl exp(my),
(79)
. 1 . . 2iam _,
o, (v) = p—— [B147 exp(kiy) + Br45 exp(kay)] — WBI exp(my), (80)
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where f; and f, are given by Egs. (49) and (50),

1

a,,(v) = —— (B34} exp(kiy) + B4 exp(koy)] — WBI exp(my),

where f; and f3, are given by Egs. (51) and (52),

" —21a « % m2 + a2 *
0y, (v) = ——[b14] exp(k1y) + br4; exp(kay)] + (a%T)Bl exp(my),

4 oy E]

1
0. (v) = —— [b:sd] exp(k1y) + bsd; exp(kay)],

oot 2

where b; — b, are given by Eqgs. (53)—(56).
The boundary conditions on the surface y = 0 are taken to be

0(x,0,1) = n(x, 1)
0yy(x,0,2) =0,
0,,(x,0,¢) = p(x,1),

where 7 and p are given function of x and ¢.
Eq. (75) together with Eq. (84) gives

A} + 45 =n"(a, w).
Eq. (82) together with Eq. (85) gives

2ia m?* + a*
Z2 b4 + bodl) — gBT = 0.
0283 Ao

Eq. (81) together with Eq. (86) gives
aow[f3A4; + Pad5] — 2iame B = ococ(z)a)zslp*(a, ).

Solving Egs. (87)—(89) for the unknowns 4}, 45 and B}, one obtains

* ’yl
A = - —

! A"’

* yl *
A = —

2 A* + n I
B — - 2iacywy,

og A"

(81)

(87)
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where
9, = 4ma*byn® — (m* + a*)[ue op0p* — Pyn’], (93)
v, = agopwp’ (by — by) + kyn™ (b1, — baf3y), (94)
A" = 4ma(by — bs) — (7 + (s — o). (95)

Problem III. A plate with thermo-isolated surfaces y = +L, subjected to time dependent com-
pression [28].

We shall consider the plate in Problem I but with the boundary conditions:

00

=0 ony=+=L, (96)
oy
o, =0 ony==£L, (97)
o, = —Py(x,t) ony==L. (98)

Coupled
Generalized G-L

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 1. Temperature distribution for Problem 1.
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Eq. (32) together with Eq. (96) gives
k1;11 Slnh(le) + kz;lz 31nh(k2L) = O7

cc 99

where A, A4, are parameters depending on “a” and “w”.
Eq. (47) together with Eq. (97) gives

2iaa0w{b1;11 sinh(k;L) + b4, sinh(kzL)} — & (m* 4 a*)B; sinh(mL) = 0,

Eq. (46) together with Eq. (98) gives

ccoa){ﬁﬂl cosh(kiL) + P44, cosh(kzL)} — 2iamoe, By cosh(mL) = —oe 050 Py (a, ).

Egs. (99)—(101) can be solved for the three unknowns 4;, 4> and B,

_aoeio(m® + a®)ky By (a, ) sinh(mL) sinh(k,L)

21 )
A

Coupled
Generalized G-L ———————

-0.045 -

(e}

XX

Fig. 2. Stress distribution for Problem I.

(99)

(100)

(101)

(102)
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- aogerw(m* + a®)ki Py (a, ) sinh(mL) sinh (kL)
A2 = - A 3
3 2iacgw*(biky — byky )Py (a, w) sinh (kL) sinh (kL)
1= < )
A
where

A = k]C][ Sll’lh(k]L) — k2012 Sil’lh(kzL),
c11 = 4a*mab, sinh(k,L) cosh(mL) + (m* + a*) B, cosh(k,L) sinh(mL),

c12 = 4a’mab, sinh(k L) cosh(mL) + (m* + a*) By cosh(k, L) sinh(mL).

5. Numerical results

1343

(103)

(104)

(105)
(106)

(107)

As a numerical example we have considered polymethyl methacrylate which has a wide ap-
plications in industry and medicine. Since we have w = wy + i{, where i is an imaginary unit,

Coupled

Generalized G-L —— —— ..

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 3. Temperature distribution for Problem II.
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e = e™'(cos (¢ + 1 sin {¢) and for small values of time, we can take o = w, (real). Taking o* = 0.5
in Eq. (5) and using Eq. (21), we get

o Aull A
R@) =38 o~ andan 75 ) (108)

The numerical constants are taken as

4
37‘2 =08, A4=0.106, & =0.045 B=0005 T)=773K, 1,=0.02,

vy=003, L=6 =2, and a=0.59037.

The real part of the function 6(x, y, ) and stress component o,,, on the plane (y = 3) for Problems
I and III while for Problem II on (y = —1), are evaluated for the two different values of time
namely = 0.01 and 7 = 0.1.

These results are shown in Figs. 1-6. The graph shows the four curves predicted by the different
theories of thermoeclasticity. In these figures the solid lines represent the solution for Lord—
Shulman theory and the dotted lines represent the solution corresponding to using the coupled
equation of heat conduction (7o = v =0).

Coupled
Generalized G-L ——————.—.

XX

Fig. 4. Stress distribution for Problem II.



M.I.A. Othman et al. | International Journal of Engineering Science 40 (2002) 1329-1347 1345

Coupled

Generalized G-L_._.___ _.__.

Fig. 5. Temperature distribution for Problem III.

It was found that near the surface of the solid where the boundary conditions dominate the
coupled and the generalized theories give very close results. We notice also that results for the
temperature and stress distributions when the relaxation time is appeared in the heat equation are
distinctly different from those when the relaxation time is not mentioned in the heat equation. This
is due to the fact that thermal waves in the Fourier theory of heat equation travel with an infinite
speed of propagation as opposed to finite speed in the non-Fourier case. It is clear that for small
values of time the solution is localized in a finite region. This region grows with increasing time
and its edge is the location of the wave front. This region is determined only by the values of time ¢
and the relaxation time 7, and v.

6. Concluding remarks

Owing to the complicated nature of the equations for the generalized thermo-viscoelasticity,
few attempts have been made to solve problems in this field, these attempts utilize approximate
methods valid for only a specific range of some parameters [15].

The state space approach developed in [32] was adopted for the solution of one-dimensional
problems in generalized thermo-viscoelasticity with one relaxation time [33] and with two relax-
ation times [34].
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Fig. 6. Stress distribution for Problem III.

In this work, the method of normal mode analysis is introduced for the solution of two-
dimensional problems in generalized thermo-viscoelasticity and applied to three specifics in which
the displacement, temperature and stress are coupled. This method gives exact expressions
without any assumed restrictions on either the temperature or displacement.
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